Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2347715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717445

RESUMO

Our recent randomized, placebo-controlled study in Irritable Bowel Syndrome (IBS) patients with diarrhea or alternating bowel habits showed that the probiotic Bifidobacterium longum (BL) NCC3001 improves depression scores and decreases brain emotional reactivity. However, the involved metabolic pathways remain unclear. This analysis aimed to investigate the biochemical pathways underlying the beneficial effects of BL NCC3001 using metabolomic profiling. Patients received probiotic (1x 1010CFU, n=16) or placebo (n=19) daily for 6 weeks. Anxiety and depression were measured using the Hospital Anxiety and Depression Scale. Brain activity in response to negative emotional stimuli was assessed by functional Magnetic Resonance Imaging. Probiotic fecal abundance was quantified by qPCR. Quantitative measurement of specific panels of plasma host-microbial metabolites was performed by mass spectrometry-based metabolomics. Probiotic abundance in feces was associated with improvements in anxiety and depression scores, and a decrease in amygdala activation. The probiotic treatment increased the levels of butyric acid, tryptophan, N-acetyl tryptophan, glycine-conjugated bile acids, and free fatty acids. Butyric acid concentration correlated with lower anxiety and depression scores, and decreased amygdala activation. Furthermore, butyric acid concentration correlated with the probiotic abundance in feces. In patients with non-constipation IBS, improvements in psychological comorbidities and brain emotional reactivity were associated with an increased abundance of BL NCC3001 in feces and specific plasma metabolites, mainly butyric acid. These findings suggest the importance of a probiotic to thrive in the gut and highlight butyric acid as a potential biochemical marker linking microbial metabolism with beneficial effects on the gut-brain axis.


Assuntos
Fezes , Síndrome do Intestino Irritável , Metaboloma , Probióticos , Síndrome do Intestino Irritável/psicologia , Síndrome do Intestino Irritável/microbiologia , Humanos , Probióticos/administração & dosagem , Masculino , Adulto , Feminino , Fezes/microbiologia , Fezes/química , Pessoa de Meia-Idade , Depressão , Ansiedade , Bifidobacterium longum , Microbioma Gastrointestinal , Metabolômica , Comorbidade
2.
mSphere ; 6(6): e0068621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756056

RESUMO

Acute respiratory infections (ARIs) are one of the most common causes of morbidity and mortality in young children. The aim of our study was to examine whether variation in maternal FUT2 (α1,2-fucosyltransferase 2) and FUT3 (α1,3/4-fucosyltransferase 3) genes, which shape fucosylated human milk oligosaccharides (HMOs) in breast milk, are associated with the occurrence of ARIs in breastfed infants as well as the influence of the nasopharyngeal microbiome on ARI risk. Occurrences of ARIs were prospectively recorded in a cohort of 240 breastfed Bangladeshi infants from birth to 2 years. Secretor and Lewis status was established by sequencing of FUT2/3 genes. The nasopharyngeal microbiome was characterized by shotgun metagenomics, complemented by specific detection of respiratory pathogens; 88.6% of mothers and 91% of infants were identified as secretors. Maternal secretor status was associated with reduced ARI incidence among these infants in the period from birth to 6 months (incidence rate ratio [IRR], 0.66; 95% confidence interval [CI], 0.47 to 0.94; P = 0.020), but not at later time periods. The nasopharyngeal microbiome, despite precise characterization to the species level, was not predictive of subsequent ARIs. The observed risk reduction of ARIs among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. However, we found no evidence that modulation of the nasopharyngeal microbiome influenced ARI risk. IMPORTANCE The observed risk reduction of acute respiratory infections (ARIs) among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. Respiratory pathogens were only weak modulators of risk, and the nasopharyngeal microbiome did not influence ARI risk, suggesting that the associated protective effects of human milk oligosaccharides (HMOs) are not conveyed via changes in the nasopharyngeal microbiome. Our observations add to the evidence for a role of fucosylated HMOs in protection against respiratory infections in exclusively or predominantly breastfed infants in low-resource settings. There is no indication that the nasopharyngeal microbiome substantially modulates the risk of subsequent mild ARIs. Larger studies are needed to provide mechanistic insights on links between secretor status, HMOs, and risk of respiratory infections.


Assuntos
Bactérias/classificação , Aleitamento Materno , Fucosiltransferases/metabolismo , Microbioma Gastrointestinal , Leite Humano/metabolismo , Bactérias/crescimento & desenvolvimento , Bangladesh , Feminino , Humanos , Lactente , Masculino , Mães , Infecções Respiratórias/microbiologia , Galactosídeo 2-alfa-L-Fucosiltransferase
3.
Environ Microbiol ; 20(6): 2256-2269, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29786169

RESUMO

We report streptococcal dysbiosis in acute diarrhoea irrespective of aetiology. Compared with 20 healthy local controls, 71 Bangladeshi children hospitalized with acute diarrhoea (AD) of viral, mixed viral/bacterial, bacterial and unknown aetiology showed a significantly decreased bacterial diversity with loss of pathways characteristic for the healthy distal colon microbiome (mannan degradation, methylerythritol phosphate and thiamin biosynthesis), an increased proportion of faecal streptococci belonging to the Streptococcus bovis and Streptococcus salivarius species complexes, and an increased level of E. coli-associated virulence genes. No enteropathogens could be attributed to a subgroup of patients. Elevated lytic coliphage DNA was detected in 2 out of 5 investigated enteroaggregative E. coli (EAEC)-infected patients. Streptococcal outgrowth in AD is discussed as a potential nutrient-driven consequence of glucose provided with oral rehydration solution.


Assuntos
Diarreia/etiologia , Diarreia/microbiologia , Streptococcus/isolamento & purificação , Bangladesh/epidemiologia , Estudos de Casos e Controles , Pré-Escolar , Diarreia/epidemiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Microbiota , Virulência/genética
4.
PLoS One ; 11(8): e0160856, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27529821

RESUMO

The microbiota of breast milk from Chinese lactating mothers at different stages of lactation was examined in the framework of a Maternal Infant Nutrition Growth (MING) study investigating the dietary habits and breast milk composition in Chinese urban mothers. We used microbiota profiling based on the sequencing of fragments of 16S rRNA gene and specific qPCR for bifidobacteria, lactobacilli and total bacteria to study microbiota of the entire breast milk collected using standard protocol without aseptic cleansing (n = 60), and the microbiota of the milk collected aseptically (n = 30). We have also investigated the impact of the delivery mode and the stage of lactation on the microbiota composition. The microbiota of breast milk was dominated by streptococci and staphylococci for both collection protocols and, in the case of standard collection protocol, Acinetobacter sp. While the predominance of streptococci and staphylococci was consistently reported previously for other populations, the abundance of Acinetobacter sp. was reported only once before in a study where milk collection was done without aseptic cleansing of the breast and rejection of foremilk. Higher bacterial counts were found in the milk collected using standard protocol. Bifidobacteria and lactobacilli were present in few samples with low abundance. We observed no effect of the stage of lactation or the delivery mode on microbiota composition. Methodological and geographical differences likely explain the variability in microbiota composition reported to date.


Assuntos
Microbiota , Leite Humano/microbiologia , Mães , Adolescente , Adulto , Aleitamento Materno , China , Humanos , Lactação , Microbiota/genética , RNA Ribossômico 16S/genética , Adulto Jovem
5.
Gut Microbes ; 2(6): 307-18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22157236

RESUMO

Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.


Assuntos
Adaptação Fisiológica , Bactérias/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Metabolômica/métodos , Animais , Bactérias/química , Fezes/microbiologia , Feminino , Trato Gastrointestinal/química , Masculino , Metaboloma , Camundongos , Viabilidade Microbiana , Modelos Animais , Plasma/química , Fatores Sexuais , Organismos Livres de Patógenos Específicos , Simbiose , Urinálise/métodos , Urina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...